Sifat Sifat Turunan

Selamat Datang di Blog Edukasionesia. Berikut ini akan postingan kami yang mengenai Sifat Sifat Turunan. Semoga Bermanfaat, Ayo silakan dibaca dengan saksama.
Misalkan \(f(x)\) adalah sebuah fungsi, maka turunannya adalah \(f'(x),\) dimana

\[f'(x)=\lim_{x\rightarrow0}\frac{f(x+h)-f(x)}{h}\]
Turunan dapat diketahui melalui sifat-sifatnya. Berikut sifat-sifat dari turunan.


Sifat-sifat Turunan


1. Jika \(f(x)=c\) dimana \(c\) adalah konstanta, maka turunannya adalah \[f'(x)=0\]
Contoh: \[ \begin{aligned} f(x)&=2 &\rightarrow f'(x)=0\\ f(x)&=13 &\rightarrow f'(x)=0\\ f(x)&=100 &\rightarrow f'(x)=0 \end{aligned} \]
2. Jika \(f(x)=cx\), maka turunannya adalah \[f'(x)=c\]
Contoh: \[ \begin{aligned} f(x)&=2x &\rightarrow &f'(x)=2\\ f(x)&=13x &\rightarrow &f'(x)=13\\ f(x)&=100x &\rightarrow &f'(x)=100 \end{aligned} \]
3. Jika \(f(x)=x^n\) maka turunannya adalah \[f'(x)=nx^{n-1}\]
Contoh: \[ \begin{aligned} f(x)&=x^4 &\rightarrow &f'(x)=4x^3\\ f(x)&=x^3 &\rightarrow &f'(x)=3x^2\\ f(x)&=x^2 &\rightarrow &f'(x)=2x \end{aligned} \]
4. Jika \(f(x)=cx^n\)maka turunannya adalah \[f'(x)=cnx^{n-1}\]
Contoh: \[ \begin{aligned} f(x)&=2x^4 &\rightarrow &f'(x)=8x^3\\ f(x)&=13x^3 &\rightarrow &f'(x)=39x^2\\ f(x)&=100x^2 &\rightarrow &f'(x)=200x \end{aligned} \]
5. Jika \(f(x)=c\,u(x)\) maka turunannya adalah \[f'(x)=c\,u'(x)\]
Contoh: \[ \begin{aligned} f(x)&=4\ln{x}&\rightarrow &f'(x)=4\frac{1}{x}\\ f(x)&=3\cos{x}&\rightarrow &f'(x)=3\sin{x}\\ f(x)&=2\sin{x}&\rightarrow &f'(x)=-2\cos{x} \end{aligned} \]
6. Jika \(f(x)=u(x)\pm v(x)\) maka turunannya adalah \[f'(x)=u'(x)\pm v'(x)\]
Contoh: \[ \begin{aligned} f(x)&=2x+x^2&\rightarrow &f'(x)=2+2x\\ f(x)&=x^4-x^3&\rightarrow &f'(x)=4x^3-3x^2\\ f(x)&=\sin{x}+\cos{x}&\rightarrow &f'(x)=\cos{x}-\sin{x} \end{aligned} \]
7. Jika \(f(x)=u(x)v(x)\) maka turunannya adalah \[f'(x)=u'(x)v(x)+u(x)v'(x)\]
Contoh: \[ f(x)=x^4x^3 \] Misalkan \(u(x)=x^4\) dan \(v(x)=x^3,\) maka \(u'(x)=4x^3\) dan \(v'(x)=3x^2,\) sehingga \[ \begin{aligned} f'(x)&=(4x^3)(x^3)+(x^4)(3x^2)\\ &=4x^6+3x^6\\ &=7x^6 \end{aligned} \]
8. Jika \(f(x)=\displaystyle\frac{u(x)}{v(x)}\) maka turunannya adalah \[f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}\]
Contoh: \[ f(x)=\frac{x^4}{x^3} \] Misalkan \(u(x)=x^4\) dan \(v(x)=x^3,\) maka \(u'(x)=4x^3\) dan \(v'(x)=3x^2,\) sehingga \[ \begin{aligned} f'(x)&=\frac{(4x^3)(x^3)-(x^4)(3x^2)}{(x^3)^2}\\ &=\frac{4x^6-3x^6}{x^6}\\ &=1 \end{aligned} \]
9. Jika \(f(x)={u(x)}^n\) maka turunannya adalah \[f'(x)=n(u(x))^{n-1}u'(x)\]
Contoh: \[ f(x)=(2x+x^2)^4 \] Misalkan \(u(x)=2x+x^2,\) sehingga \(u'(x)=2+2x,\) maka \[ f'(x)=4\left(2x+x^2\right)^3(2+2x) \]

Sifat-sifat Turunan Logaritma Natural

\[ \begin{aligned} f(x)&={^c}\log{x}&\rightarrow &f'(x)=\frac{1}{x}.{^c}\log e\\ f(x)&={^c}\log{g(x)}&\rightarrow&f'(x)=\frac{g'(x)}{g(x)}.{^c}\log e \end{aligned} \] dimana \(e\) adalah bilangan euler yang nilainya adalah \(e=2\text{,}7182818.\)

Sifat-sifat Turunan Logaritma

\[ \begin{aligned} f(x)&=\sin{x}&\rightarrow&f'(x)=\cos{x}\\ f(x)&=\cos{x}&\rightarrow&f'(x)=-\sin{x}\\ f(x)&=\tan{x}&\rightarrow&f'(x)=\sec^2{x}\\ f(x)&=\cot{x}&\rightarrow&f'(x)=-\csc^2{x}\\ f(x)&=\sec{x}&\rightarrow&f'(x)=\sec{x}.\tan{x}\\ f(x)&=\csc{x}&\rightarrow&f'(x)=-\csc{x}.\cot{x} \end{aligned}\] Perluasan Turunan Fungsi Trigonometri \[ \begin{aligned} f(x)&=\sin{g(x)}&\rightarrow&f'(x)=g'(x).\cos{g(x)}\\ f(x)&=\cos{g(x)}&\rightarrow&f'(x)=g'(x).-\sin{g(x)}\\ f(x)&=\tan{g(x)}&\rightarrow&f'(x)=g'(x).\sec^2{g(x)}\\ f(x)&=\cot{g(x)}&\rightarrow&f'(x)=g'(x).-\csc^2{g(x)}\\ f(x)&=\sec{g(x)}&\rightarrow&f'(x)=g'(x).\sec{g(x)}.\tan{g(x)}\\ f(x)&=\csc{g(x)}&\rightarrow&f'(x)=g'(x).-\csc{g(x)}.\cot{g(x)} \end{aligned} \]